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Abstract. There is a need for a methodology to fairly compare and present evaluation study
results of stochastic global optimization algorithms. This need raises two important questions

of (i) an appropriate set of benchmark test problems that the algorithms may be tested upon
and (ii) a methodology to compactly and completely present the results. To address the first
question, we compiled a collection of test problems, some are better known than others.

Although the compilation is not exhaustive, it provides an easily accessible collection of
standard test problems for continuous global optimization. Five different stochastic global
optimization algorithms have been tested on these problems and a performance profile plot

based on the improvement of objective function values is constructed to investigate the
macroscopic behavior of the algorithms. The paper also investigates the microscopic behavior
of the algorithms through quartile sequential plots, and contrasts the information gained from

these two kinds of plots. The effect of the length of run is explored by using three maximum
numbers of function evaluations and it is shown to significantly impact the behavior of the
algorithms.
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1. Introduction

Problems in business, medicine, engineering, and applied sciences nowa-
days are more and more complex. In mathematical terminology, these
problems are no longer linear, quadratic, nor unimodal. The domains of
the problems could be nonconvex and disconnected. Their objective func-
tions are often multimodal with peaks, valleys, channels, and flat hyper-
planes of different heights. Solving these types of problems, which are
classified as global optimization problems, to optimality undoubtedly
becomes a true challenge. In many cases, just estimating the total number
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of local optima on this rugged objective function terrain is very difficult,
while finding and enumerating all the local optima may be completely
impractical. Stochastic global optimization techniques offer alternatives to
address these difficult issues. Instead of finding and comparing all the local
optima to identify the global optimal solution, stochastic global optimiza-
tion algorithms sample and evaluate candidate solutions and approximate
the global optimum (or at least one of the global optima). This means that
the final solution obtained from stochastic global optimization methods
converge to the global optimum in a probabilistic sense.
A variety of recently proposed stochastic global optimization algorithms

show potential to solve complex problems but their relative merits are diffi-
cult to analyze systematically. Typically after an algorithm has been devel-
oped, it is tested against a set of problems. The set of test problems of one
algorithm is often selected haphazardly and differs from that of another
algorithm. The differences in test problem sets may induce bias toward par-
ticular algorithms when comparing their performances. Moreover, analyz-
ing a large set of data collected in order to gain insights on how the
algorithms behave is in itself another challenge.
In this paper, we propose a collection of test problems that can be used as

benchmark problems. Although this collection is not exhaustive, it could be
used as a starting point when one needs some test problems. Previous
attempts to assemble global optimization test problems include the two col-
lections by Floudas and Pardalos (1990) and by Floudas et al. (1999). Other
on-line collections of test problems also exist. These include the CUTE test
collection by Gould et al. (2001), the GLOBAL library at GAMS World
(2002), and the COCONUT benchmark maintained by Neumaier (2003a).
Notice though that the CUTE collection primarily consists of local optimi-
zation problems, and the COCONUT benchmark focuses on constrained
global optimization problems. The problems in this paper, besides the box
constraints, are mainly unconstrained multimodal optimization problems.
Nonetheless, the two volumes together with the on-line collections and the
problems in this paper should offer a sufficiently large set of test problems.
Some of the problems in this paper are inspired by real world applications.
For example, the problem (36) listed in Table 1 is called the Transistor
Modelling problem. The function provides a least-squares approach to the
solution of a set of nine simultaneous nonlinear equations, which arise in
the context of Transistor Modelling (Price, 1983). The sinusoidal problem
(48) in Table 1 was constructed to retain characteristics that arise in aircraft
composite structural design problems (Zabinsky et al., 1992), yet properties
of the constructed problem are known, e.g. the global optimum and the
number of local optima. The sinusoidal problem has a few parameters that
can be adjusted to change the relative heights of the local optima, the loca-
tion of the global optimum, and the number of variables. Similarly, Storn’s
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Table 1. Fifty test problems

Name of the problem Dimension n

1 Ackley’s Problem (ACK) 10

2 Aluffi-Pentini’s Problem (AP) 2

3 Becker and Lago Problem (BL) 2

4 Bohachevsky 1 Problem (B1) 2

5 Bohachevsky 2 Problem (B2) 2

6 Branin Problem (BR) 2

7 Camel Back-3 Three Hump Problem (CB3) 2

8 Camel Back-6 Six Hump Problem (CB6) 2

9 Cosine Mixture Problem (CM) 2, 4

10 Dekkers and Aarts Problem (DA) 2

11 Easom Problem (EP) 2

12 Epistatic Michalewicz Problem (EM) 5

13 Exponential Problem (EXP) 10

14 Goldstein and Price Problem (GP) 2

15 Griewank Problem (GW) 10

16 Gulf Research Problem (GRP) 3

17 Hartman 3 Problem (H3) 3

18 Hartman 6 Problem (H6) 6

19 Helical Valley Problem (HV) 3

20 Hosaki Problem (HSK) 2

21 Kowalik Problem (KL) 4

22 Levy and Montalvo 1 Problem (LM1) 3

23 Levy and Montalvo 2 Problem (LM2) 5, 10

24 McCormick problem (MC) 2

25 Meyer and Roth Problem (MR) 3

26 Miele and Cantrell Problem (MCP) 4

27 Modified Langerman Problem (ML) 10

28 Modified Rosenbrock Problem (MRP) 2

29 Multi-Gaussian Problem (MGP) 2

30 Neumaier 2 Problem (NF2) 4

31 Neumaier 3 Problem (NF3) 10

32 Odd Square Problem (OSP) 10

33 Paviani’s Problem (PP) 10

34 Periodic Problem (PRD) 2

35 Powell’s Quadratic Problem (PQ) 4

36 Price’s Transistor Modelling Problem (PTM) 9

37 Rastrigin Problem (RG) 10

38 Rosenbrock Problem (RB) 10

39 Salomon Problem (SAL) 5, 10

40 Schaffer 1 Problem (SF1) 2

41 Schaffer 2 Problem (SF2) 2

42 Shubert Problem (SBT) 2

43 Schwefel Problem (SWF) 10

44 Shekel 5 Problem (S5) 4

45 Shekel 7 Problem (S7) 4

46 Shekel 10 Problem (S10) 4

47 Shekel’s Foxholes Problem (FX) 5, 10

48 Sinusoidal Problem (SIN) 10, 20

49 Storn’s Tchebychev Problem (ST) 9, 17

50 Wood’s Problem (WP) 4
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Tchebychev problem (49) in Table 1 arises in the analog or digital filter
design in electrical engineering. The global minimum of this problem is
located at the origin but it is very difficult to locate the minimizer. Many of
the other problems included in the table are well-known in the literature for
testing genetic or population set based algorithms.
The global optimization problems in this paper follow the form:

minimize fðxÞ subject to x 2 X

where x is a continuous variable vector with domain X � Rn, and
fðxÞ : X 7! R is a continuous real-valued function. The domain X is defined
within upper and lower limits of each dimension. We notate the global
optimal solution x�, with its corresponding global optimal function value
fðx�Þ or f � for a short hand notation.
Five stochastic global optimization algorithms are used as demonstrative

algorithms. They are either the simulated annealing (SA) type or the popu-
lation set based type. These two types of algorithms are used extensively in
practice. The first two algorithms are Improving Hit-and-Run (IHR) (Zabin-
sky, et al., 1993) and Hide-and-Seek (HNS) (Romeijn and Smith, 1994).
These algorithms are of the simulated annealing type. The other three algo-
rithms are Controlled Random Search (CRS), Real Coded Genetic Algorithm
(GA), and Differential Evolution (DE), which are of the population set
based type (Ali and Törn, 2004). More details on these algorithms can be
found in Appendix A. Our goal is to gain insights on the behaviors and to
provide a methodology to compare these two types of stochastic algo-
rithms. All five algorithms are tested on the same set of problems which
are detailed in Appendix B. Specific experiment and data collection proce-
dures of these algorithms will be discussed in the next section.
To compactly and comprehensively represent the data collected from the

five illustrative algorithms, we propose a modified version of the perfor-
mance profile suggested by Dolan and Moré (2002). The modified perfor-
mance profile is applicable to stochastic algorithms and uses the relative
value of objective function as the comparison basis, instead of CPU time
as in the original Dolan and Moré’s performance profile. Different run
lengths (maximum numbers of function evaluations) are used to construct
different modified performance profiles. The varying run lengths allow a
comparison between computation and accuracy of solutions. A discussion
on the effect of the run lengths is presented later in the paper. Although
the performance profile can capture a macroscopic behavior among the five
demonstrative algorithms, it does not encapsulate a microscopic behavior
of the algorithms. The microscopic behavior of the algorithms is investi-
gated through quartile sequential plots. The quartile sequential plots of
some example problems are included in the paper to illustrate the use of
the plots.
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The organization of the paper is as follows. The next section details the
methodology procedures on the experiment used to obtain the performance
data of the five demonstrative algorithms, and lists the benchmark prob-
lems in the test problem set. Section 3 summarizes the modified perfor-
mance profile which is based on the relative improvement of objective
function values, and presents the comparative study results. Section 4 con-
cludes with final remarks. Appendix A describes the five stochastic global
optimization algorithms used to illustrate the methodology in more details.
And finally Appendix B provides the mathematical formulations for all the
benchmark test problems.

2. Experimental Methodology and Test Problems

A major part of the experimental procedure of this comparative study is a
result of a discussion among a group of participants at the Stochastic Glo-
bal Optimization workshop held in New Zealand, June 2001. The authors
thank all of the participants. This experimental procedure is intended to
establish a common ground to fairly compare stochastic algorithms which
shall be run on different platforms.

2.1. METHODOLOGY

As discussed in the companion paper (Khompatraporn et al., 2005), there
are many measures of merit for algorithms. These measures can be
grouped into four categories:

1. General applicability: Dimensionality, number of local optima.
2. Efficiency: Time complexity, space complexity, analytic complexity,

algebraic complexity, theoretical complexity, order of convergence.
3. Trustworthiness: Accuracy, success ratio.
4. Ease of use: User friendliness.

In congruence to general applicability, the five demonstrative algorithms
were tested on problems with different dimensions varying from 2 to 20
and different number of local optima. The number of local optima is not
known in most of these problems, but is more than two in almost all cases.
Computation time, or time complexity of the algorithms, is an important

measure. A fair comparison of computation time may be performed when
the algorithms are coded using the same computer language and the experi-
ment is conducted on the same computer platform. In addition, the total
computation time also depends on the compiler, the coding skill of the
programmer, and user interface routines which could be resource-intensive.
Dixon and Szegö (1978) suggested the use of standard unit time as a com-
parative measure. This standard unit time would work well when the
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difference is mainly the computer platform. The experiment conducted in
this paper used different computer languages, platforms, and compilers, so
CPU time was not considered in the comparative analysis. Instead, we used
the number of function evaluations as a measure of time complexity. This
is appropriate for the algorithms tested because they have similar computa-
tional overhead per function evaluation, and they do not calculate the gra-
dient or Hessian. Thus, the function evaluation reflects the time complexity
of the algorithms.
The space complexity of the simulated annealing type and population set

based algorithms remains constant as the number of function evaluations
increases, so it is not included in the performance evaluation. The accuracy
used in the experiment yields the degree of solution accuracy up to the 5th
decimal number so as to keep the experimental results realistic and compa-
rable to the available information such as the optimal solution(s) pertain-
ing to the test problems. The algebraic complexity, analytic complexity, and
theoretical complexity for stochastic global optimization (SGO) algorithms
as discussed in Khompatraporn et al. (2005) are not emphasized in the
experiment since the focus is computational rather than theoretical. The
SA type algorithms used here guarantee to converge to the optimal solu-
tion in probability. The order of convergence of IHR and HNS algorithms
are discussed in Zabinsky et al. (1993) and Romeijn and Smith (1994),
respectively, where the number function evaluations for IHR is shown to
be Oðn5=2Þ for a class of elliptical problems, and HNS is shown to stochas-
tically dominate pure adaptive search (PAS) under certain assumptions.
Although no theoretical convergence results are known for the population
set based methods considered here, empirical evidence suggests that the
probability of finding the global minimum increases with the size of the
population set (Ali and Törn, 2004).
One consideration in comparing algorithms is the trade-off between

efficiency and trustworthiness. Törn and Žilinskas (1989) suggested a com-
parison by using success ratio which is the number of times that the
algorithm successfully finds the optimum over the total number of times
that the algorithm is applied, starting at random points, to the problem.
But an advantage of applying the performance profile plot, which will
be discussed in more detail in Section 3, is that the success ratio is implicitly
embedded in the plot. The value of q in the performance profile (see Dolan
and Moré, 2002) plot gives us a sense of how good the solutions obtained
by the algorithms are relative to the best solutions found. The algorithms
that yield a higher value of q are of course the ones that are more success-
ful. Various performance profiles may be constructed at different levels of
efficiency to explore overall behavior. We will examine three levels of effi-
ciency which are 100n2, 10n2, and 10n maximum number of objective func-
tion evaluations to investigate the behavior of algorithms.
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The user friendliness of these algorithms is not discussed because it
depends on the implementation of the algorithms. However, all five algo-
rithms were easily applied to the test problems.
Another issue that needs to be addressed and agreed upon is the term

iteration because various algorithms associate different meanings and com-
putational effort with iteration. For instance, a mechanism of a simple
genetic algorithm is to progress in an epoch or generation base. During
each epoch i, a number of chromosomes or individuals ki, where ki is an
integer greater or equal to one, are evaluated. Each individual evaluation
normally requires one objective function calculation. Hence, there are at
least ki function evaluations needed for that epoch. If there are some li
mutations during the epoch i, then there are ki þ li function evaluations
required for that epoch. But the genetic algorithm needs multiple epochs to
improve the estimate of the optimal solution. The number of epochs m is
usually predetermined by the user. So the total number of function evalua-
tions implemented by this genetic algorithm equals

Pm
i¼0ðki þ liÞ, where

epoch zero refers to the algorithm’s initialization epoch. If an epoch is
equivalent to an iteration, then the number of iterations is not equal to the
number of function evaluations in the genetic algorithm context. On the
other hand, a simulated annealing type algorithm calls the function evalua-
tion routine only once per iteration. The number of function evaluations is
thus the same as the number of iterations in both IHR and HNS. To pre-
vent any future nonequivalent comparison, the number of function evalua-
tions shall be used as the basis to compare and to stop the algorithms.
To directly compare the performance of algorithms, we keep the effort

constant and compare the quality of the result obtained. We investigate three
lengths of runs, long, medium, and short with 100n2, 10n2, and 10n function
evaluations respectively, and record only the improving objective function
values. The factor n2 or n in the maximum number of function evaluations
reflect the effect of dimensionality on performance, because problems with
higher dimension are expected to be more difficult to solve than those with
lower dimension. The quadratic polynomial is used because we expect the
performance to grow faster than linear, and it is somewhat consistent with
the rate of convergence of IHR on elliptical programs. The coefficients are
arbitrary but they are sufficient to demonstrate the effect of the maximum
number of function evaluations on the performance of the algorithms.
Considering the various algorithmic comparative issues discussed above,

the following experimental procedure was established at the end of the
workshop in New Zealand:

1. Assemble a set of 50 test problems.
2. Test selected algorithms on all 50 test problems.
3. Perform 30 replications for each problem and each algorithm.
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4. Stop each algorithm after a fixed number of function evaluations
(100n2, 10n2, or 10n) for each replication, where n refers to the dimen-
sion of the problem.

5. Record only the function evaluations that obtain improving objective
function values. Collect both the improving function evaluation num-
bers and the corresponding objective function values as data.

6. Perform graphical and statistical analysis on the data.

The number of problems in the test problem suite is based on a concept
that there should not be too few of the problems that no conclusion can
be drawn, yet the test suite should not be overwhelming that this study is
unmanageable. The number of test problems was 50, with several varia-
tions for some problems as listed in Table 1, bringing the final number up
to 56. To take into account the impact of the random number seeds we
ran each algorithm on each problem 30 times, totaling 30� ð50þ 6Þ ¼
1680 replications per algorithm. Implementation of the three population
set based algorithms requires setting of some parameter values. We set
these parameter values according to suggestions in the respective papers,
and the parameter values used in this study are included in Appendix A.
Implementation of IHR and HNS is straightforward and does not depend
on any parameter. Appendix A describes these algorithms in more detail.
The focus of the analysis is decided to be on the objective function val-

ues found by the algorithms, rather than the locations of the solutions in
the domain space. This is because locations must distinguish between mul-
tiple optima, whereas using objective function values easily includes multi-
ple optima. As a result, only the iterations with improving function values
are recorded.

2.2. TEST PROBLEMS FOR COMPUTATIONAL EXPERIMENTS

A collection of 50 test problems and 6 variations have been compiled from
the literature and various sources. These problems range from 2 to 20 in
dimension and have a variety of inherent difficulty. All the problems have
continuous variables. Table 1 lists these problems in alphabetical order
with the corresponding number of variables of each problem. Table 2 tal-
lies the problems according to their dimensions. We only have one problem
in 20 dimensions, and we recommend that test sets in the future should
include more multimodal problems in higher dimensions. A detailed
description of each test problem can be found in Appendix B.

3. Comparative Assessment

In this section, we summarize the results obtained from the five algorithms
briefly discussed in Section 1. A systematic assessment of global optimiza-
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tion algorithms via a modified performance profile similar in nature to the
one suggested by Dolan and Moré (2002) is used. The modified perfor-
mance profile is applicable to stochastic algorithms in our experimental
framework. Dolan and Moré proposed a performance profile of an algo-
rithm based on three items: time tðp;sÞ, performance ratio rðp;sÞ, and frac-
tional performance qsðsÞ, where p 2 P, the set of all problems and s 2 S,
the set of all solvers.
Computing time tðp;sÞ required to solve problem p by solver s was used by

Dolan and Moré, but they also recommended that various measures could
be used instead of computing time. We replace the computing time tðp;sÞ
with a different measure on the relative improvement of the function values.
In particular, we replace tðp;sÞ with mðp;sÞ for the m-fold improvement (scaled
distance to the optimal function value f �) found by solver s on problem p
after a fixed number k of function evaluations. Precisely, we have:

mðp;sÞ ¼
f̂ ðp;sÞðafter k function evaluationsÞ � f �

ðfw � f � Þ ð1Þ

for problem p with solver s, where fw denotes the worst (largest) function
value found among the solvers on that particular problem p, and f̂ðp;sÞ
(after k function evaluations) is the average estimate of the optimal
function values after k function evaluations over 30 replications, found
by solver s on problem p. Notice here that mðp;sÞ is calculated from a
single value of f̂ðp;sÞ but there were 30 replications for each solver on
each problem in the experiment. To collapse the results from 30 replica-
tions to a single number, we considered several approaches, including
the average of the estimated optimal function value over all 30 replica-
tions, the median value over 30 replications, and the best value found
over 30 replications. We decided to use the average as the estimate of the
optimal function values. This implies that our focus is on the average
performance, which seems to be a typical performance reported in the
literature.

Table 2. Number of test problems by dimension

Dimension n Number of problems

2 19

3 5

4 9

5 4

6 1

9 2

10 14

17 1

20 1
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The second item, the performance ratio rðp;sÞ, is defined similarly to Do-
lan and Moré’s definition, but again substituting mðp;sÞ for tðp;sÞ to obtain:

rðp;sÞ ¼
mðp;sÞ

minfmðp;sÞ for all s 2 Sg
ð2Þ

for each problem p and solver s. Notice that the value of the performance
ratio is always 1 for the solver s that performs the best on a specific prob-
lem p. If the performance ratio rðp;sÞ ¼ 2, then the m-fold improvement
found by solver s on problem p was twice the best value found by another
solver on the same problem p.
The final item is qsðsÞ, the fraction of the total number of problems that

solver s has a performance ratio rðp;sÞ within a factor s:

qsðsÞ ¼
1

total number of problems
fsizefp 2 P : rðp;sÞOsgg; ð3Þ

where P is the set of all problems and sP1. The ‘‘total number of prob-
lems’’ for our investigation is 56, where the extra six problems are due to
variations of some test problems. The ‘‘size’’ is the number of problems
such that the performance ratio rðp;sÞ is less than or equal to s for solver s.
The performance profile plot compares how well the solvers can estimate

the global optimum relative to one another. For instance, in Figure 1(a) at
s ¼ 1, the Genetic Algorithm found the best solutions (first place) in over
50% of the 56 total test problems. When s ¼ 10, the Genetic Algorithm
found a solution within ten times of the best found solution in approxi-
mately 75% of the 56 total test problems. The sum of these fractions for
any given s may be greater than one because more than one solver may
find solutions within s multiple of the best found solution on the same
problem. The curve of each solver is nondecreasing but its final value on
the vertical axis depends on the last value of s. If the value of the curve is
less than one at the last value of s, it means that on some problems that
particular solver got stuck at some local optima and its best solutions
found were worse than the best solutions found by some other solver(s) in
multiples of s beyond the horizontal scale. As s approaches infinity, the
final value of each curve will approach one.
Figure 1 also illustrates the effect that a stopping criterion based on the

maximum number of function evaluations has on the performance of the
algorithms by examining three different levels of the maximum number of
function evaluations. Figure 1(a)–(c) show the performance profiles of the
the algorithms when the maximum numbers of function evaluations are
100n2, 10n2, and 10n, respectively. The three subfigures in Figure 1 show
that the performance of the algorithms highly depends on the maximum
number of function evaluations allowed. From Figure 1(a) with a maxi-
mum of 100n2 function evaluations, GA and CRS illustrate promising
results by dominating the other algorithms throughout the range of s. The
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Figure 1. Performance profile plot based on the average of best objective function values.
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same subfigure also shows that IHR and DE perform moderately, whereas
HNS is outperformed by the other algorithms. However, when the maxi-
mum numbers of function evaluations are 10n2 and 10n as in Figures 1(b)
and (c), HNS performs relatively well among the five algorithms and IHR
dominates the other algorithms over most of the s values. On the other
hand, CRS which was the second best algorithm in Figure 1(a) performs
poorly when the maximum number of function evaluations is limited to
10n as shown in Figure 1(c). This implies that if a practitioner was willing
to use 100n2 function evaluations, then GA or CRS would be preferred,

Figure 2. The objective function values for Griewank problem.

Figure 3. Quartile sequential plot of Branin problem.
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whereas if only 10n function evaluations were allowed then IHR or HNS
should be implemented.
This effect of the maximum number of function evaluations on algorithm

performance is not surprising when we examine the data for individual
problems. For example, the data (mðp;sÞ values) for the Griewank problem
as shown in Figure 2 reveals that as the number of function evaluations
increases the best algorithm for this problem changes. At the very begin-
ning IHR and HNS perform relatively well compared to the other algo-
rithms. Then at about the 500th function evaluation, CRS outperforms the
other algorithms and remains the best algorithm until approximately the
6,500th function evaluation. After this point, GA takes over as the best
algorithm for the problem and remains so until the last function evalua-
tion. The figure also shows that although DE is dominated by the other
four algorithms throughout the 10,000 function evaluations, it consistently
improves its estimate of the global optimum.
Furthermore, we construct individual quartile sequential plots, as shown in

Figures 3–6, to capture the progression of the algorithms in terms of the
improvement of the objective function values and the variation of the best
function values found in each replication as the number of function evaluations
increases. We note that the scale of the horizontal axis in the quartile sequential
plots illustrated are intentionally not evenly spaced. Algorithms often find a lot
of improving function values at the very beginning of replication runs. This
behavior will be lost with an evenly scaled axis scheme. Each vertical bar at the
k-th function evaluation in the quartile sequential plots represents a range of
function values between the 25th and the 75th percentiles. The symbol indi-
cates the 50th percentile at that particular kth function evaluation.

Figure 4. Quartile sequential plot of Griewank problem.
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The Branin Problem in Figure 3 represents a case when all algorithms give
similar results for both the average and the variance of all the replications at
the last function evaluation. Notice the variance of all algorithms, especially
CRS, GA, and DE algorithms, is relatively large at the very first function
evaluations. Then all algorithms settle at about the same function value,
each with an extremely tight 25–75th quartile range at the last function eval-
uation. This result suggests that when the variation is high, different
approaches (e.g. average, median, or best) to estimate the optimal function
values may lead to different conclusions using the performance profile.

Figure 5. Quartile sequential plot of modified Langerman problem.

Figure 6. Quartile Sequential Plot of Shekel’s Foxholes Problem with n ¼ 10.
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In a similar plot of the Griewank Problem shown in Figure 4, the per-
centile ranges for IHR, HNS, and DE are tighter than those of CRS and
GA. As in Figure 2, CRS algorithm performs relatively well compared to
the other algorithms but is overtaken by GA at the very last function eval-
uations. Comparing Figures 2 and 4 illustrates the extra information a
quartile sequential plot provides.
The quartile sequential plot for the Modified Langerman Problem in

Figure 5 indicates that IHR, HNS, GA, and DE algorithms seem to be
trapped at local optima, i.e. the function values are not improving,
throughout or after some point during the replication runs. Only the CRS
algorithm shows improvement in the function values after getting stuck at
some local optima at the very beginning of the runs.
And lastly the quartile sequential plot of the Shekel’s Foxholes Problem

with n ¼ 10 in Figure 6 shows a circumstance where the IHR, CRS, and
GA algorithms are clearly trapped at some local optima after 5000 func-
tion evaluations with a tight 25–75th percentile range. The HNS algorithm
dominates the other four algorithms after 1250 function evaluations. The
DE algorithm is again clearly dominated throughout the entire replication
run in this plot.
As one can imagine, creating the quartile sequential plots for all 56 prob-

lems can become a tedious task. But the detailed information on how the
algorithms progress will be completely lost without these plots. While Fig-
ure 2 illustrates that CRS outperforms the other algorithms between 500
and 7000 function evaluations, Figure 4 shows the high variation of CRS in
this range. The 25–75th percentile range for CRS at 625 function evalua-
tions overlaps the ranges for IHR and HNS, but at 2500 function evalua-
tions the entire quartile range for CRS is below the other algorithms. At
10,000 function evaluations, however, GA overtakes CRS in both average
value and quartile range. Without Figure 3, we would not notice the large
variations and may be tempted to draw false conclusions based on small dif-
ferences of the means. And without Figure 6 we would not know that HNS
outperformed the other algorithms, as the percentiles were not symmetrical.
While it is clear that the maximum number of function evaluations

affects the performance of each algorithm, the choice of the maximum
number of function evaluations depends on the user’s goal and limitation.
Figure 1 indicates that the conclusion of which algorithm performs best
depends on the number of function evaluations the user is willing to spend.
A better stopping criterion than the maximum number of function evalua-
tions is perhaps one that yields some statistical information and balances
the user’s cost of performing function evaluations with the benefit of hav-
ing a high probability of obtaining a solution close to the global optimum.
A topic for future research is to establish a statistical stopping criterion for
global optimization algorithms.
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4. Concluding Remarks

This paper presents a comparative study of stochastic global optimization
algorithms using a modified performance profile plot together with quartile
sequential plots. The modified performance profile plot is suitable when a
macroscopic behavior of the algorithms is to be monitored. But the micro-
scopic behavior of the algorithms can only be revealed with more individ-
ual problem plots such as the quartile sequential plots. We demonstrate
the effect that the maximum number of function evaluations as the stop-
ping criterion has on the performance of the algorithms. One algorithm
may be preferred if a small number of function evaluations is allowed but
a different algorithm may be favored if a large number of function evalua-
tions is permitted. We also compiled 50 benchmark test problems that
could be readily used and we hope that some of these problems will even-
tually become a part of the standard test problem set. And lastly we sug-
gest a research direction on developing a statistical stopping criterion for
global optimization algorithms.
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Appendix A. Algorithms

In this section, we present the five algorithms mentioned in the paper. Only
a brief description of the algorithms will be given. For more details, we
refer to the respective individual references. We begin with the simulated
annealing type algorithms.

A.1. HIT-AND-RUN-METHODS

Two Hit-and-Run methods for global optimization are used in the compu-
tational experiments performed in this paper. A survey of these methods,
as applied to global optimization, can be found in Zabinsky and Wood
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(2002). Hit-and-Run was originally developed as a means to generate
asymptotically uniformly distributed points (Smith, 1984), and has been
applied to global optimization by using it to generate candidate points
within a simulated annealing algorithm. The two specific implementations
summarized here have been named Improving Hit-and-Run (Zabinsky
et al., 1993), and Hide-and-Seek (Romeijn and Smith, 1994).
Both Hit-and-Run methods described here use the same underlying pro-

cedure. Given a random point xk which may depend upon the previous
point or several previous points, the algorithm generates a random direc-
tion dk and a random step size sk along the random direction to deter-
mine a candidate point xkþ1 ¼ xk þ skdk. In Improving Hit-and-Run
(IHR), the new point xkþ1 is accepted only if its objective function value
is better than that of the previous point, i.e. fðxk þ skdkÞ < fðxkÞ for a
minimization problem. In Hide-and-Seek, the candidate point is accepted
with a probability that corresponds to the Metropolis acceptance crite-
rion.
Both algorithms are motivated by theoretical results from pure adaptive

search and adaptive search, and will converge with probability one to the
global optimum for a broad class of problems (summarized in Wood and
Zabinsky (2002)). It has also been shown that the expected number of
function evaluations of Improving Hit-and- Run on quadratic problems is
of order Oðn5=2Þ (Zabinsky, et al., 1993). Other variations of these two
algorithms have been developed, but will not be discussed here. The basic
procedure of the two algorithms is summarized below.

ALGORITHM 1. Improving Hit-and-Run (IHR) Algorithm

Step 1. Initialize the iteration counter k ¼ 0, and let x0 2 X and
f0 ¼ fðx0Þ.

Step 2. Generate a random direction vector dk from a uniform distribu-
tion on the surface of a unit n-dimensional hypersphere.

Step 3. Generate a step size sk by sampling uniformly in X along the
direction vector dk from the current point xk. The candidate
point is wkþ1 ¼ xk þ skdk.

Step 4. Update the current point by accepting or rejecting the candidate
point according to the following scheme:

xkþ1 ¼
xk þ skdk if fðxk þ skdkÞ < fk
xk otherwise

�

Set fkþ1 ¼ fðxkþ1Þ.
Step 5. Stop if the stopping criterion is satisfied. Otherwise increase k by

one and return to Step 2.
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ALGORITHM 2. Hide-and-Seek (HNS) Algorithm

Step 1. Initialize k, x0, and f0 as in Algorithm 1. Also initialize
T0 2 ½0;1Þ.

Step 2. Generate a random direction vector as in Algorithm 1.
Step 3. Generate a step size as in Algorithm 1.
Step 4. Update the current point by accepting or rejecting the candidate

point according to the following scheme:

xkþ1 ¼
xk þ skdk with probability PTk

ðxk;wkþ1Þ
xk otherwise

�

where PTk
ðxk;wkþ1Þ ¼ minfexpððfðxkÞ � fðwkþ1ÞÞ=TkÞ; 1g and

update the temperature according to a cooling schedule,
Tkþ1 ¼ sðTkÞ.
Set fkþ1 ¼ fðxkþ1Þ.

Step 5. Stop if the stopping criterion is satisfied. Otherwise increase k by
one and return to Step 2.

In Step 4 of Hide-and-Seek, the probability of accepting the candidate
point wkþ1, given the current iteration point xk and the current tempera-
ture Tk is expressed as PTk

. This is characteristic of simulated annealing
algorithms in general, where, in addition to a generator, there is a proba-
bility of accepting nonimproving points. For Hide-and-Seek, the accep-
tance probability is

PTðx;wÞ ¼
1 if improving, i.e. fðwÞ < fðxÞ
exp f ðxÞ�f ðwÞ

T

n o
otherwise

(

which is also known as the Metropolis criterion (Metropolis, et al., 1953).
Notice that Improving Hit-and-Run only accepts improving points, so may
be viewed as the limiting case occurring as Tk tends to zero. Romeijn and
Smith (1994) showed that virtually any cooling schedule for Hide-and-Seek
could be chosen, as long as the temperature converges to zero in probabil-
ity. They developed a cooling schedule based on the best objective function
values sampled thus far, coupled with an estimate of the unknown global
minimum f �. This adaptive cooling schedule of Hide-and-Seek was used in
the computational experiments, and

Tk ¼
2ðf ðxkÞ � f̂ ðxÞÞ

v21�aðnÞ
where v21�aðnÞ is the 100ð1� aÞ percentile point of the v-squared distribu-
tion with n degrees of freedom. This is motivated by a second-order Taylor
series approximation of the objective function, and uses an estimator of
the optimum, f̂ðxÞ, which is updated when an improving point is obtained.
The estimator of the global optimum after k iterations is given by
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f̂ðx0; . . . ; xkÞ ¼ f kð0Þ �
f kð1Þ � f kð0Þ

ð1� qÞ�n=2 � 1

where f kð0Þ ¼ minj¼0;1;...;k fðxjÞ is the smallest objective function value found
after k iterations, f kð1Þ is the second smallest, and q 2 ð0; 1Þ so that f̂ is the
lower endpoint of a 100ð1� qÞ% confidence interval for f �.

A.2. POPULATION SET BASED GLOBAL OPTIMIZATION METHODS

Population set based global optimization methods have been developed
since the 1970’s, including Genetic Algorithms. A fundamental concept of
population set based global optimization methods is to successively trans-
form the population set S into points that concentrate at the global opti-
mum, where S is a subset of the domain X. Ali and Törn (2002) have
experimentally shown that some modifications of these methods are effi-
cient and robust. We present here a few modified versions of the popula-
tion set based algorithms, namely the Controlled Random Search
algorithm, a real coded Genetic Algorithm, and the Differential Evolution
algorithm.

A.2.1.Controlled Random Search (CRS)

Controlled Random Search (CRS) algorithm was first developed by Price
(1977, 1983). The algorithm generates alternative solutions to replace the
worst solution in a population set S through simplices. Several versions of
the CRS algorithm have been proposed. We will refer to the original CRS
algorithm as CRS1 (Price, 1977). The first two improvements, namely
CRS2 (Price, 1983) and CRS3 (Price, 1987), were suggested by Price him-
self. Subsequently, Ali and Storey (1994) suggested CRS4 and CRS5, and
the experiments proved CRS4 to be superior than CRS5 (Ali et al., 1997).
More details of CRS4 algorithm can be found in Ali and Storey (1994)
and Ali and Törn 2004. The experiment conducted in this study used the
CRS4 version described below.

ALGORITHM 3. Controlled Random Search 4 (CRS4) Algorithm

Step 1. Determine the initial set S ¼ fx1; x2; . . . ; xNg where the points
xi; i ¼ 1; 2; . . . ;N are sampled uniformly in X. Evaluate fðxiÞ at
each point xi; i ¼ 1; 2; . . . ;N. Take N ¼ 10n, where n is the
dimension of x. Set generation counter k ¼ 0.

Step 2. Determine the best and the worst points in S. Determine the
points xmax, xmin and their function values fmax, fmin such that
fmax ¼ maxx2S fðxÞ and fmin ¼ minx2S fðxÞ. If the stopping condi-
tion (e.g. fmax � fmin < �) is satisfied, then stop.
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Step 3. Generate a new point to replace a point in S. Choose uniformly n
distinct points xpð1Þ;xpð2Þ; . . . ; xpðnÞ from S (selection) and com-
pute xnew ¼ 2G� xpðnÞ where the centroid G is given by

G ¼ 1

n
xmin þ

Xn�1

j¼1
xpðjÞ

 !

: ðA1Þ

If xnew 6¼ X go to Step 3; otherwise compute fðxnewÞ. If
fðxnewÞPfmax then go to Step 3.

Step 4. Update S. Update S by S ¼ S [ fxnewg � fxmaxg. If xnew becomes
the new best point in S, then evaluate f in r points (e.g. r ¼ 4)
from the b-distribution using the current xmin as its mean and the
distance between xmin and xmax as standard deviation. Update S
for each point if necessary. Increase k by one and go to Step 2.

A:2:2: Genetic Algorithm (GA)

Another popular population set based method is the Genetic Algorithm
(GA) (Goldberg, 1989). In this method a set S � X is initialized. Then S is
evolved from one generation to the next by replacing subsets of S succes-
sively. As the algorithm proceeds the set of solutions in S tends towards
the global optimum. In GA, every solution x is often coded using a binary
string representation, but this study used a real coded GA to represent
continuous variables. Three concepts involving the evolution of the set S in
the basic GA are:

� Evaluation: The function fðxÞ is evaluated every time a new point (or
solution) is chosen to be in the current set S.
� Stochastic selection: From the current set S, randomly select m points
in S to be parents, with bias towards better points.
� Reproduction: The selected points (parents) above are used to produce
a set of new points called children using two genetic operations: cross-
over and mutation. The crossover operation is achieved by taking two
points, cutting the strings at a random index and exchanging parts by
arithmetic crossovers described in Equations A2 and A3. Mutation is
achieved by simply flipping the bit at some random index.

This cycle of evaluation, selection and reproduction terminates when a
stopping criterion is met. We present here a real coded genetic algorithm
(RGA) for continuous variables as presented in (Ali and Törn, 2004). In
this implementation of GA two children points are calculated at a time.
The crossover operator has two parts. In the first part a child (point) is
calculated from randomly selected nþ 2 parents, xpð1Þ;xpð2Þ; . . . ;xpðnþ2Þ,
from S, where n is the dimension of the problem. The selected nþ 2 points
are used to calculate the centroid G as in Equation A1 of the n points
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remaining after excluding the two worst points, say xpðnþ1Þ and xpðnþ2Þ. The
first child is then taken as the best of f̂x1; x̂2g, where

x̂1 ¼ 2G� xpðnþ1Þ and x̂2 ¼ 2G� xpðnþ2Þ: ðA2Þ
If the j-th point (j ¼ 1; 2), x̂j 62 X then it is calculated as x̂j ¼ 1

2 ðGþ xpðnþjÞÞ.
The second child is found from the best of f̂x3; x̂4g, where x̂3 and x̂4 are

obtained using the second part of the crossover rule which will now be
defined. The second part of crossover is done arithmetically, i.e. given the
parent vectors x ¼ ðx1; . . . ; xi; . . . ;xnÞ and y ¼ ðy1; . . . ; yi; . . . ; ynÞ one calcu-
lates the i-th component

x̂i3 ¼ aix
i þ ð1� aiÞyi; x̂i4 ¼ aiy

i þ ð1� aiÞxi; i ¼ 1; 2; . . . ; n ðA3Þ
where ai are uniform random numbers in ½�0:5; 1:5�.
This crossover is carried out between two parents (e.g. x and y) selected

randomly from the nþ 2 points, again excluding the worst points xpðnþ1Þ
and xpðnþ2Þ. If the trial points fall outside X, random selection of
ai 2 ½�0:5; 1; 5� continues until f̂x3; x̂4g 2 X. For the next pair of children
nþ 2 points are again selected randomly from S and the above process
continued. The m children are therefore generated two at a time. Mutation
for a point is carried out by setting

x̂i ¼ x̂i þ cðUi � LiÞ ðA4Þ
for a randomly selected index i. Here, Ui and Li are the upper and lower
bound of the element xi and c is a random number in ½�0:01; 0:01�. The
mutation probability is taken to be 0:001. The description of RGA is pre-
sented below.

ALGORITHM 4. Real Coded Genetic Algorithm (RGA)

Step 1. Determine the initial set S. Same as in Algorithm 3.
Step 2. Determine the best and the worst points in S. Same as in Algo-

rithm 3.
Step 3. Generate m new points to replace m points in S.

� Selection: select nþ 2 points randomly from S as parents.
� Create two points (children) using crossover (parts I and II)
and mutation.

Crossover: use first part of the crossover rule in Equa-
tion A2 to create the first point (child) and the second
part in Equation A3 for the second point.
Mutation: mutate a component of each point with
probability 0:001 using Equation (7). Mutation is
repeated if the mutated solution is infeasible.

Repeat Step 3 until m points are created.
Step 4. Update S. Replace m worse points in S with the m new points

generated. Increase k by one and go to Step 2.
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A:2:3: Differential Evolution (DE)

Storn and Price (1997) recently proposed a new population set based
method, the Differential Evolution (DE) Method. Unlike CRS which
attempts to replace a single point in S per generation, and GA which
replaces m points (parents) of S by the new m points (children) per genera-
tion, DE attempts to replace all points in S by new points at each genera-
tion. We present here a modification of the differential evolution
algorithm, namely the differential evolution algorithm using pre-calculated
differentials (DEPD) designed by Ali and Törn (2002). The overall struc-
ture of DEPD resembles that of CRS and GA. Like the other population
set based global optimization methods DEPD also attempts to guide an
initial set S ¼ fx1;x2; . . . ; xNg of points in X to the vicinity of the global
minimum through repeated cycles of selection, reproduction (mutation and
crossover), and acceptance. In its mutation phase DEPD randomly selects
three distinct points xr1;xr2 and xr3 from the current set S. None of these
points should coincide with the current target point xi. The weighted differ-
ence of any two points is then added to the third point which can be math-
ematically described as

x̂i ¼ xr1 þ Fðxr2 � xr3Þ ðA5Þ
where F is a scaling factor which can be calculated automatically using a
formula, see Ali and Törn (2002, 2004). All the differential vectors
ðxr2 � xr3Þ are stored in an array A before A is updated with new differen-
tials after every R generation. The trial point yi is found from its parents
xi, the target point, and f̂xi using the following crossover rule

y j
i ¼

x̂ji if r jO0:5 or j ¼ Ii
x j
i if r j > 0:5 and j 6¼ Ii

�

ðA6Þ

where Ii is a randomly chosen integer in the set I, i.e., Ii 2 I ¼ f1; 2; . . . ; ng;
the superscript j represents the j-th component of respective vectors;
rj 2 ð0; 1Þ drawn randomly for each j. In the acceptance phase the function
value at the trial point, fðyiÞ, is compared to fðxiÞ, the value at the target
point. If fðyiÞ < fðxiÞ then yi replaces xi in S, otherwise S retains the origi-
nal xi. The process continues until all members of S are targeted. The
DEPD can be summarized as follows.

ALGORITHM 5. DEPD Algorithm

Step 1. Determine the initial set S. Same as in Algorithm 3.
Step 2. Determine the best and the worst points in S. Same as in Algo-

rithm 3.
Step 3. Generate N new points to replace all points in S. For each xi 2 S,

determine yi by the following two reproduction operations:
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� Mutation: If ðk ¼ 0Þ or k � 0 (mod R) execute mode 1 else
mode 2.

– Mode 1: Randomly select three points xr1; xr2, and xr3
from S except xi, the running target and find the point
x̂i by the mutation rule in equation A5 using the differ-
ential vector ðxr2 � xr3Þ. If a component x̂ji falls outside
X then it is found randomly in between the j-th lower
and upper limits. Update the i-th element of the array A
with this differential.

– Mode 2: Randomly select a point xr1 from S and a dif-
ferential vector from A and find the point x̂i by the
mutation rule in equation A5. If a component x̂ji falls
outside X then it is found randomly in-between the j-th
lower and upper limits.

� Crossover: Calculate the trial vector yi corresponding to the tar-
get xi from xi andx̂i using the crossover rule in Equation A6.

Step 4. Update S. Select each trial vector yi for the ðkþ 1Þ-th generation
using the acceptance criterion: replace xi 2 S with yi if
fðyiÞ < fðxiÞ, otherwise retain xi. Increase k by one and go to
Step 2.

Appendix B. A Collection of Benchmark Global Optimization Test Problems

In this appendix we present 50 popular test problems which are often used
by GO researchers. Some of these problems can be found in textbooks, in
individual research articles, or at web sites, but it is difficult to find a single
source for all of them. Therefore we produce these models in full detail
below. Please note that in several cases the optimal solution vector and
corresponding global solution are known only as a numerical approxima-
tion.
1. Ackley’s Problem (ACK) (Storn and Price, 1997)

min
x

fðxÞ ¼ �20 exp �0:02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n�1
Xn

i¼1
xi2

s !

� exp n�1
Xn

i¼1
cosð2pxiÞ

 !

þ 20þ e

subject to �30OxiO30, i 2 f1; 2; . . . ; ng. The number of local minima is
not known. The global minimum is located at the origin with fðx�Þ ¼ 0.
Tests were performed for n ¼ 10.
2. Aluffi-Pentini’s Problem (AP) (Aluffi-Pentini et al., 1985)

min
x

fðxÞ ¼ 0:25x1
4 � 0:5x1

2 þ 0:1x1 þ 0:5x2
2

subject to �10Ox1;x2O10. The function has two local minima, one of
them is global with fðx�Þ � �0:3523 located at ð�1:0465; 0Þ.
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3. Becker and Lago Problem (BL) (Price, 1977)

min
x

fðxÞ ¼ ðjx1j � 5Þ2 þ ðjx2j � 5Þ2

subject to �10Ox1; x2O10. The function has four minima located at
ð	5;	5Þ, all with fðx�Þ ¼ 0.
4. Bohachevsky 1 Problem (BF1) (Bohachevsky et al., 1986)

min
x

fðxÞ ¼ x21 þ 2x22 � 0:3 cosð3px1Þ � 0:4 cosð4px2Þ þ 0:7

subject to �50Ox1;x2O50. The number of local minima is unknown but
the global minimizer is located at x� ¼ ð0; 0Þ with fðx�Þ ¼ 0.
5. Bohachevsky 2 Problem (BF2) (Bohachevsky et al., 1986)

min
x

fðxÞ ¼ x21 þ 2x22 � 0:3 cosð3px1Þ cosð4px2Þ þ 0:3

subject to �50Ox1;x2O50. The number of local minima is unknown but
the global minimizer is located at x� ¼ ð0; 0Þ with fðx�Þ ¼ 0.
6. Branin Problem (BP) (Dixon and Szegö, 1978)

min
x

fðxÞ ¼ aðx2 � bx1
2 þ cx1 � dÞ2 þ gð1� hÞ cosðx1Þ þ g

where a ¼ 1, b ¼ 5:1=ð4p2Þ, c ¼ 5=p, d ¼ 6, g ¼ 10, h ¼ 1=ð8pÞ. The region
of interest is given by �5Ox1O10 and 0Ox2O15. There are three minima,
all global, in this region. The minimizers are x� � ð�p;
12:275Þ; ðp; 2:275Þ; ð3p; 2:475Þ with fðx�Þ ¼ 5=ð4pÞ.
7. Camel Back – 3 Three Hump Problem (CB3) (Dixon and Szegö, 1975)

min
x

fðxÞ ¼ 2x21 � 1:05x41 þ
1

6
x61 þ x1x2 þ x22

subject to �5Ox1, x2O5. The function has three local minima, one of
them is global located at x� ¼ ð0; 0Þ with fðx�Þ ¼ 0.
8. Camel Back – 6 Six Hump Problem (CB6) (Dixon and Szegö, 1978;

Michalewicz, 1996)

min
x

fðxÞ ¼ 4x21 � 2:1x41 þ
1

3
x61 þ x1x2 � 4x22 þ 4x42

subject to �5Ox1, x2O5. This function is symmetric about the origin and
has three conjugate pairs of local minima with values f � �1:0316, �0.2154,
2.1042. The function has two global minima at x� � ð0:089842;�0:712656Þ
and (�0.089842,0.712656) with fðx�Þ � �1:0316.
9. Cosine Mixture Problem (CM) (Breiman and Cutler, 1993)

max
x

fðxÞ ¼ 0:1
Xn

i¼1
cosð5pxiÞ �

Xn

i¼1
x2i

subject to �1OxiO1, i 2 f1; 2; . . . ; ng. The global maxima are located at
the origin with the function values 0:20 and 0:40 for n ¼ 2 and n ¼ 4,
respectively.
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10. Dekkers and Aarts Problem (DA) (Dekkers and Aarts, 1991)

min
x

fðxÞ ¼ 105x21 þ x22 � ðx21 þ x22Þ
2 þ 10�5ðx21 þ x22Þ

4

subject to �20Ox1; x2O20. The origin is a local minimizer, but there are
two global minimizers located at x� ¼ ð0; 15Þ and (0,�15) with
fðx�Þ ¼ �24777.
11. Easom Problem (EP) (Michalewicz, 1996)

min
x

fðxÞ ¼ � cosðx1Þ cosðx2Þ expð�ðx1 � pÞ2 � ðx2 � pÞ2Þ
subject to �10Ox1, x2O10. The minimum value is located at ðp; pÞ with
fðx�Þ ¼ �1. The function value rapidly approaches zero, when away from
ðp;pÞ.
12. Epistatic Michalewicz Problem (EM) (second ICEO)

min
x

fðxÞ ¼ �
Xn

i¼1
sinðyiÞðsinðiy2i =pÞÞ

2m

yi ¼
xi cosðhÞ � xiþ1 sinðhÞ; i ¼ 1; 3; 5; . . ., O n

xi sinðhÞ þ xiþ1 cosðhÞ; i ¼ 2; 4; 6; . . ., O n

xi; i ¼ n

8
<

:

subject to 0OxiOp, i 2 f1; 2; . . . ; ng, h ¼ p=6 and m ¼ 10. The number of
local minima is not known but the global minimizer is presented in Table 3.
13. Exponential Problem (EXP) (Breiman and Cutler, 1993)

max
x

fðxÞ ¼ exp ð�0:5
Xn

i¼1
xi

2Þ

subject to �1OxiO1, i 2 f1; 2; . . . ; ng. The optimal value fðx�Þ ¼ 1 is
located at the origin. Our tests were performed with n ¼ 10.
14. Goldstein and Price (GP) (Dixon and Szegö, 1978)

min
x

fðxÞ¼½1þðx1þx2þ1Þ2ð19�14x1þ3x21�14x2þ6x1x2þ3x22Þ�

� ½30þð2x1�3x2Þ2ð18�32x1þ12x21þ48x2�36x1x2þ27x22Þ�
subject to �2Ox1, x2O2. There are four local minima and the global min-
ima is located at x� ¼ ð0;�1Þ, with fðx�Þ ¼ 3.
15. Griewank Problem (GW) (Griewank, 1981; Jansson and Knüppel,

1995)

min
x

fðxÞ ¼ 1þ 1

4000

Xn

i¼1
xi

2 �
Yn

i¼1
cos

xi
ffiffi
i
p
� �

Table 3. Epistatic Michalewicz’s global optimizers

n f(x*) x*

5 )4.687658 (2.693, 0.259, 2.074, 1.023, 1.720)

10 )9.660152 (2.693, 0.259, 2.074, 1.023, 2.275, 0.500, 2.138, 0.794, 2.219, 0.533)
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subject to �600OxiO600, i 2 f1; 2; . . . ; ng. The function has a global mini-
mum located at x� ¼ ð0; 0; . . . ; 0Þ with fðx�Þ ¼ 0. Number of local minima
for arbitrary n is unknown, but in the two dimensional case there are some
500 local minima. Tests were performed for n ¼ 10.
16. Gulf Research Problem (GRP) (Moré et al., 1981; Himmelblau,

1972)

min
x

fðxÞ ¼
X99

i¼1
exp �ðui � x2Þx3

x1

� �

� 0:01� i

� �2

where ui ¼ 25þ ½�50 lnð0:01� iÞ�1=1:5 subject to 0:1Ox1O100, 0Ox2O25:6,
and 0Ox3O5. This problem has a global minimizer at (50,25,1.5) with
fðx�Þ ¼ 0.
17. Hartman 3 Problem (H3) (Dixon and Szegö, 1978)

min
x

fðxÞ ¼ �
X4

i¼1
ci exp �

X3

j¼1
aijðxj � pijÞ2

" #

subject to 0OxjO1, j 2 f1; 2; 3g with constants aij; pij and ci given in
Table 4. There are four local minima, xlocal � ðpi1; pi2; pi3Þ with
fðxlocalÞ � �ci. The global minimum is located at
x� � ð0:114614; 0:555649; 0:852547Þ with fðx�Þ � �3:862782.
18. Hartman 6 Problem (H6) (Dixon and Szegö, 1978)

min
x

fðxÞ ¼ �
X4

i¼1
ci exp �

X6

j¼1
aijðxj � pijÞ2

" #

subject to �0OxjO1, j 2 f1; . . . ; 6g, with constants aij and ci given in
Table 5 and constants pij in Table 6. There are four local minima,

Table 4. Data for Hartman 3 Problem

i ci aij pij

j = 1 2 3 j = 1 2 3

1 1 3 10 30 0.3689 0.117 0.2673

2 1.2 0.1 10 35 0.4699 0.4387 0.747

3 3 3 10 30 0.1091 0.8732 0.5547

4 3.2 0.1 10 35 0.03815 0.5743 0.8828

Table 5. Data for Hartman 6 Problem

i ci aij

j = 1 2 3 4 5 6

1 1 10 3 17 3.5 1.7 8

2 1.2 0.05 10 17 0.1 8 14

3 3 3 3.5 1.7 10 17 8

4 3.2 17 8 0.05 10 0.1 14
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xlocal � ðpi1; . . . ; pi6Þ with fðxlocalÞ � �ci. The global minimum is located at
x� � ð0:201690; 0:150011; 0:476874; 0:275332; 0:311652; 0:657301Þ with
fðx�Þ � �3:322368.
19. Helical Valley Problem (HV) (Wolfe, 1978)

min
x

fðxÞ ¼ 100½ðx2 � 10hÞ2 þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx21 þ x22Þ

q
� 1Þ2� þ x23

where

h ¼
1
2p tan

�1 x2
x1
; if x1P0

1
2p tan

�1 x2
x1
þ 1

2 ; if x1 < 0

(

subject to �10Ox1, x2, x3O10. This is a steep-sided valley which follows a
helical path. The minimum is located at x� ¼ ð1; 0; 0Þ with fðx�Þ ¼ 0.
20. Hosaki Problem (HSK) (Benke and Skinner, 1991)

min
x

fðx1; x2Þ ¼ ð1� 8x1 þ 7x21 � 7=3x31 þ 1=4x41Þx22 expð�x2Þ
subject to 0Ox1O5, 0Ox2O6. There are two minima of which the global
minimum is fðx�Þ � �2:3458 with x� ¼ ð4; 2Þ.
21. Kowalik Problem (KL) (Jansson and Knüppel, 1995)

min
x

fðxÞ ¼
X11

i¼1
ai �

x1ð1þ x2biÞ
ð1þ x3bi þ x4b

2
i

� �2

subject to 0OxiO0:42, i 2 f1; 2; 3; 4g. The values for ai and bi are given in
Table 7:
This is a least squares problem with a global optimal value

fðx�Þ � 3:0748� 10�4 located at x� � ð0:192; 0:190; 0:123; 0:135Þ.

Table 6. Data for Hartman 6 Problem

i pij

j=1 2 3 4 5 6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.665

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

Table 7. Data for Kowalik Problem

i 1 2 3 4 5 6 7 8 9 10 11

ai 0.1957 0.1947 0.1735 0.16 0.0844 0.0627 0.0456 0.0342 0.0323 0.0235 0.0246

bi 0.25 0.50 1.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
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22. Levy and Montalvo 1 Problem (LM1) (Levy and Montalvo, 1985)

min
x

fðxÞ ¼ ðp=nÞ
�
10 sin2ðpy1Þ þ

Xn�1

i¼1
ðyi � 1Þ2½1þ 10 sin2ðpyiþ1Þ�

þðyn � 1Þ2
�

where yi ¼ 1þ 1
4 ðxi þ 1Þ for �10OxiO10, i 2 f1; 2; . . . ; ng. There are

approximately 5n local minima and the global minimum is known to be
fðx�Þ ¼ 0 with x� ¼ ð�1;�1; . . . ;�1Þ. Our tests were performed with n ¼ 3.
23. Levy and Montalvo 2 Problem (LM2) (Levy and Montalvo, 1985;

Dekkers and Aarts, 1991)

min
x

fðxÞ ¼ 0:1
�
sin2ð3px1Þ þ

Xn�1

i¼1
ðxi � 1Þ2½1þ sin2ð3pxiþ1Þ�

þðxn � 1Þ2½1þ sin2ð2pxnÞ�
�

subject to �5OxiO5, i 2 f1; 2; . . . ; ng. There are approximately 15n minima
and the global minimizer is known to be x� ¼ ð1; 1; . . . ; 1Þ with fðx�Þ ¼ 0.
Our tests were performed with n ¼ 5; 10.
24. McCormick Problem (MC) (McCormick, 1982)

min
x

fðxÞ ¼ sinðx1 þ x2Þ þ ðx1 � x2Þ2 � ð3=2Þx1 þ ð5=2Þx2 þ 1

subject to �1:5Ox1O4 and �3Ox2O3. This problem has a local minimum
at (2.59, 1.59) and a global minimum at (�0.547, �1.547) with fðx�Þ �
�1:9133.
25. Meyer and Roth Problem (MR) (Wolfe, 1978)

min
x

fðxÞ ¼
X5

i¼1

x1x3ti
ð1þ x1ti þ x2viÞ

� yi

� �2

subject to �10OxiO10, i 2 f1; 2; 3g. This is a least squares problem
with minimum value fðx�Þ � 0:4� 10�4 located at x� � ð3:13; 15:16; 0:78Þ.
Table 8 lists the parameter values of this problem.
26. Miele and Cantrell Problem (MCP) (Wolfe, 1978)

min
x

fðxÞ ¼ exp ðx1Þ � x2ð Þ4þ100ðx2 � x3Þ6 þ tanðx3 � x4Þð Þ4þx18

Table 8. Data for Meyer and Roth Problem

i ti vi yi

1 1.0 1.0 0.126

2 2.0 1.0 0.219

3 1.0 2.0 0.076

4 2.0 2.0 0.126

5 0.1 0.0 0.186
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subject to �1OxiO1, i 2 f1; 2; 3; 4g. The number of local minima is
unknown but the global minimizer is located at x� ¼ ð0; 1; 1; 1Þ with
fðx�Þ ¼ 0.
27. Modified Langerman Problem (ML) (second ICEO)

min
x

fðxÞ ¼ �
X5

j¼1
cj cosðdj=pÞ expð�pdjÞ;

where dj ¼
Pn

i¼1ðxi � ajiÞ2 and 0 
 xiO10, i 2 f1; 2; . . . ; ng. The test used
n ¼ 10. The constants cj and aji are given in Table 9. The number of local
minima is not known, but the global minima are shown in Table 10.
28. Modified Rosenbrock Problem (MRP) (Price, 1977)

min
x

fðxÞ ¼ 100ðx2 � x1
2Þ2 þ 6:4ðx2 � 0:5Þ2 � x1 � 0:6

h i2

subject to �5Ox1; x2O5. This function has two global minima each with
fðx�Þ ¼ 0 (corresponding to the intersection of two parabolas) and a local
minimum (where the parabolas approach without intersection). The global
minima are located at x� � ð0:3412; 0:1164Þ, (1,1).
29. Multi-Gaussian Problem (MGP) (Benke and Skinner, 1991)

max
x

fðxÞ ¼
X5

i¼1
ai expð�ððx1 � biÞ2 þ ðx2 � ciÞ2Þ=di2Þ

subject to �2Ox1; x2O2. The function has one global maximum at
x� � ð�0:01356;�0:01356Þ with fðx�Þ � 1:29695. There are also 4 other
local maxima and a saddle point. Values for the parameters ai, bi, ci, and
di are given in Table 11.

Table 10. Global optimizers for Modified Langerman Problem

n f(x*) x*

5 )0.965 (8.074, 8.777, 3.467, 1.867, 6.708)

10 )0.965 (8.074, 8.777, 3.467, 1.867, 6.708, 6.349, 4.534, 0.276, 7.633, 1.567)

Table 9. Data for Modified Langerman Problem

j cj aji

i = 1 2 3 4 5 6 7 8 9 10

1 0.806 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020

2 0.517 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374

3 0.100 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982

4 0.908 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426

5 0.965 8.074 8.777 3.467 1.867 6.708 6.349 4.534 0.276 7.633 1.567
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30. Neumaier 2 Problem (NF2) (Neumaier, 2003b)

min
x

fðxÞ ¼
Xn

k¼1
bk �

Xn

i¼1
xi

k

 !2

subject to 0OxiOn, i 2 f1; 2; . . . ; ng. We consider a case when n ¼ 4 and
b ¼ ð8; 18; 44; 114Þ. The global minimum is fð1; 2; 2; 3Þ ¼ 0.
31. Neumaier 3 Problem (NF3) (Neumaier, 2003b)

min
x

fðxÞ ¼
Xn

i¼1
ðxi � 1Þ2 �

Xn

i¼2
xixi�1

subject to �n2OxiOn2, i 2 f1; 2; . . . ; ng. The case considered here is
n ¼ 10. The number of local minima is not known, but the global minima
can be expressed as:

fðx�Þ ¼ � nðnþ 4Þðn� 1Þ
6

; x�i ¼ iðnþ 1� iÞ:
The global minima for some values of n are presented in Table 12.
32. Odd Square Problem (OSP) (Second ICEO)

min
x

fðxÞ ¼ �ð1:0þ 0:2d=ðDþ 0:1ÞÞ cosðDpÞe�D=2p

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1
ðxi � biÞ2

s

; D ¼
ffiffiffi
n
p
ðmax jxi � bijÞ;

�15OxiO15, i 2 f1; 2; . . . ; 20g and
b ¼ ð1; 1:3; 0:8;�0:4;�1:3; 1:6;�2;�6; 0:5; 1:4; 1; 1:3; 0:8;
� 4;�1:3; 1:6;�0:2;�0:6; 0:5; 1:4Þ:

The number of local minima for a given n is not known but the global
minimum is known to be fðx�Þ � �1:143833, x� ffi b (many solutions near
b). We used n ¼ 10 in our experiment.

Table 11. Data for Multi-Gaussian Problem

i ai bi ci di

1 0.5 0.0 0.0 0.1

2 1.2 1.0 0.0 0.5

3 1.0 0.0 )0.5 0.5

4 1.0 )0.5 0.0 0.5

5 1.2 0.0 1.0 0.5

Table 12. Global minima for Neumaier 3 Problem

n 10 15 20 25 30

f(x*) )210 )665 )1520 )2900 )4930
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33. Paviani Problem (PP) (Himmelblau, 1972)

min
x

fðxÞ ¼
X10

i¼1
½ðlnðxi � 2ÞÞ2 þ ðlnð10� xiÞÞ2� �

Y10

i¼1
xi

 !0:2

subject to 2OxiO10, i 2 f1; 2; . . . ; 10g. This function has a global mini-
mizer at x�i � 9:351 for all i, with fðx�Þ � �45:778.
34. Periodic Problem (PRD) (Price, 1977)

min
x

fðxÞ ¼ 1þ sin2 x1 þ sin2 x2 � 0:1 expð�x12 � x2
2Þ

subject to �10Ox1;x2O10. There are 49 local minima all with minimum
values 1 and global minimum located at x� ¼ ð0; 0Þ with fðx�Þ ¼ 0:9.
35. Powell’s Quadratic Problem (PWQ) (Wolfe, 1978)

min
x

fðxÞ ¼ ðx1 þ 10x1Þ2 þ 5ðx3 � x4Þ2 þ ðx2 � 2x3Þ4 þ 10ðx1 � x4Þ4

subject to �10OxiO10, i 2 f1; 2; 3; 4g. This is a unimodal function with
fðx�Þ ¼ 0, x� ¼ ð0; 0; 0; 0Þ. The minimizer is difficult to obtain with accu-
racy as the Hessian matrix at the optimum is singular.
36. Price’s Transistor Modelling Problem (PTM) (Price, 1977, 1983)

min
x

fðx1; x2; . . . ;x9Þ ¼ c2 þ
X4

k¼1
ðak2 þ bk

2Þ

where

ak ¼ ð1� x1x2Þx3fexp½x5ðg1k � g3kx7 � 10�3 � g5kx8 � 10�3Þ� � 1g
� g5k þ g4kx2;

bk ¼ ð1� x1x2Þx4fexp½x6ðg1k � g2k � g3kx7 � 10�3 þ g4kx9 � 10�3Þ��1g
� g5kx1 þ g4k;

c ¼ x1x3 � x2x4;

and �10OxiO10, i 2 f1; 2; . . . ; 9g. The values of gik are given in Table 13.
The global minimum occurs very close to (0.9,0.45,1,2,8,8,5,1,2) with

fðx�Þ ¼ 0. The number of local minima is unknown.
37. Rastrigin Problem (RG) (Storn and Price, 1997; Törn and Žilinskas,

1989)

Table 13. Data for Price’s Transistor Modelling Problem

i gik

k = 1 2 3 4

1 0.485 0.752 0.869 0.982

2 0.369 1.254 0.703 1.455

3 5.2095 10.0677 22.9274 20.2153

4 23.3037 101.779 111.461 191.267

5 28.5132 111.8467 134.3884 211.4823
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min
x

fðxÞ ¼ 10nþ
Xn

i¼1
½x2i � 10 cosð2pxiÞ�

subject to �5:12OxiO5:12, i 2 f1; 2; . . . ; ng. The total number of minima
for this function is not exactly known but the global minimizer is located
at x� ¼ ð0; 0; . . . ; 0Þ with fðx�Þ ¼ 0. For n ¼ 2, there are about 50 local min-
imizers arranged in a lattice like configuration. Our tests were performed
with n ¼ 10.
38. Rosenbrock Problem (RB) (Schwefel, 1995; Moré, et al., 1981)

min
x

fðxÞ ¼
Xn�1

i¼1
½100ðxiþ1 � x2i Þ

2 þ ðxi � 1Þ2�

subject to �30OxiO30, i 2 f1; 2; . . . ; ng. Our tests were performed with
n ¼ 10. This function is known as the extended Rosenbrock function. It is
unimodal, yet due to a saddle point it is very difficult to locate the mini-
mizer x� ¼ ð1; 1; . . . ; 1Þ with fðx�Þ ¼ 0.
39. Salomon Problem (SAL) (Salomon, 1995)

min
x

fðxÞ ¼ 1� cosð2pkxkÞ þ 0:1kxk

where kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 x
2
i

q
and �100OxiO100. The number of local minima

(as a function of n) is not known, but the global minimizer is located at
x� ¼ ð0; 0; 0; . . . ; 0Þ with fðx�Þ ¼ 0. Our tests were performed with
n ¼ 5; 10.
40. Schaffer 1 Problem (SF1) (Michalewicz, 1996)

min
x

fðxÞ ¼ 0:5þ
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q� �2
�0:5

1þ 0:001ðx21 þ x22Þ
	 
2

subject to �100Ox1;x2O100. The number of local minima is not known,
but the global minimum is located at x� ¼ ð0; 0Þ with fðx�Þ ¼ 0.
41. Schaffer 2 Problem (SF2) (Michalewicz, 1996)

min
x

fðxÞ ¼ ðx21 þ x22Þ
0:25ðsin2ð50ðx21 þ x22Þ

0:1Þ þ 1Þ
subject to �100Ox1;x2O100. The number of local minima is not known,
but the global minimum is located at x� ¼ ð0; 0Þ with fðx�Þ ¼ 0.
42. Shubert Problem (SBT) (Levy and Montalvo, 1985)

min
x

fðxÞ ¼
Yn

i¼1

X5

j¼1
j cosððjþ 1Þxi þ jÞ

 !

subject to �10OxiO10, i 2 f1; 2; . . . ; ng. Our tests were performed with
n ¼ 2. The number of local minima for this problem (given n) is not known
but for n ¼ 2, the function has 760 local minima, 18 of which are global
with fðx�Þ � �186:7309. All two dimensional global minimizers are listed
in Table 14:
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43. Schwefel Problem (SWF) (Muhlenbein et al., 1991)

min
x

fðxÞ ¼ �
Xn

i¼1
xi sinð

ffiffiffiffiffiffiffi
jxij

p
Þ

subject to �500OxiO500, i 2 f1; 2; . . . ; ng. The number of local minima
for a given n is not known, but the global minimum value
fðx�Þ � �418:9829n is located at x� ¼ ðs; s; . . . ; sÞ, s � 420:97. Our tests
were performed with n ¼ 10.
44. Shekel 5 Problem (S5) (Dixon and Szegö, 1978)

min
x

fðxÞ ¼ �
X5

i¼1

1
P4

j¼1ðxj � aijÞ2 þ ci

subject to 0OxjO10, j 2 f1; 2; 3; 4g with constants aij and cj given in
Table 15 below. There are five local minima and the global minimizer is
located at x� ¼ ð4:00; 4:00; 4:00; 4:00Þ with fðx�Þ � �10:1499.
45. Shekel 7 Problem (S7) (Dixon and Szegö, 1978)

min
x

fðxÞ ¼ �
X7

j¼1

1
P4

i¼1ðxj � aijÞ2 þ ci

subject to 0OxjO10, j 2 f1; 2; 3; 4g with constants aij and cj given in Table
15. There are seven local minima and the global minimizer is located at
x� ¼ ð4:00; 4:00; 4:00; 4:00Þ with fðx�Þ � �10:3999.

Table 14. Global optimizers for Shubert Problem

x*

()7.0835, 4.8580), ()7.0835, )7.7083), ()1.4251, )7.0835), (5.4828, 4.8580), ()1.4251, )0.8003),
(4.8580, 5.4828), ()7.7083, )7.0835), ()7.0835, )1.4251), ()7.7083, )0.8003), ()7.7083, 5.4828),
()0.8003, )7.7083), ()0.8003, )1.4251), ()0.8003, 4.8580), ()1.4251, 5.4828), (5.4828, )7.7083),
(4.8580, �7.0835), (5.4828, �1.4251), (4.8580, �0.8003)

Table 15. Data for Shekel Problem Family

i aij ci

j = 1 2 3 4

S5 1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

S7 6 2 9 2 9 0.6

7 5 5 3 3 0.3

S10 8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

A NUMERICAL EVALUATION OF SEVERAL STOCHASTIC ALGORITHMS 667



46. Shekel 10 Problem (S10) (Dixon and Szegö, 1978)

min
x

fðxÞ ¼ �
X10

j¼1

1
P4

i¼1ðxj � aijÞ2 þ ci

subject to 0OxjO10, j 2 f1; 2; 3; 4g with constants aij and cj given in Table
15. There are 10 local minima and the global minimizer is located at
x� ¼ ð4:00; 4:00; 4:00; 4:00Þ with fðx�Þ � �10:5319.
47. Shekel’s Foxholes (FX) (Bersini et al., 1996)

min
x

fðxÞ ¼ �
X30

j¼1

1

cj þ
Pn

i¼1ðxi � ajiÞ2

subject to 0OxiO10, i 2 f1; 2; . . . ; 10g. Our tests were performed with
n ¼ 5 and 10. The constants cj and aji are given in Table 16. The number
of local minima is not known, but the global minima are presented in
Table 17.

Table 16. Data for Shekel’s Foxholes Problem

j cj aji

i = 1 2 3 4 5 6 7 8 9 10

1 0.806 9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020

2 0.517 9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374

3 0.100 8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982

4 0.908 2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426

5 0.965 8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567

6 0.669 7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208

7 0.524 1.256 3.605 8.623 6.905 4.584 8.133 6.071 6.888 4.187 5.448

8 0.902 8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762

9 0.531 0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637

10 0.876 7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247

11 0.462 0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016

12 0.491 2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789

13 0.463 8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109

14 0.714 2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564

15 0.352 4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670

16 0.869 8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826

17 0.813 8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591

18 0.811 4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740

19 0.828 2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675

20 0.964 6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258

21 0.789 0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070

22 0.360 5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234

23 0.369 3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027

24 0.992 8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064

25 0.332 1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224

26 0.817 0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644

27 0.632 0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229

28 0.883 4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506

29 0.608 9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732

30 0.326 4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500
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48. Sinusoidal Problem (SIN) (Zabinsky et al., 1992)

min
x

fðxÞ ¼ � A
Yn

i¼1
sinðxi � zÞ þ

Yn

i¼1
sinðBðxi � zÞÞ

" #

subject to 0OxiO180, i 2 f1; 2; . . . ; ng. The variable x is in degrees. Param-
eter A affects the amplitude of the global optimum; B affects the periodicity
and hence the number of local minima; z shifts the location of the global
minimum; and n indicates the dimension. Our tests were performed with
A ¼ 2:5;B ¼ 5; z ¼ 30, and n ¼ 10, and 20. The location of the global solu-
tion is at x� ¼ ð90þ z; 90þ z; . . . ; 90þ zÞ with the global optimum value of
fðx�Þ ¼ �ðAþ 1Þ. The number of local minima increases dramatically in
dimension, and when B ¼ 5 the number of local minima is equal to:

Xbn=2c

i¼0

n!

ðn� 2iÞ!ð2iÞ! 3
n�2i22i

� �

:

49. Storn’s Tchebychev Problem (ST) (Price, 2002)
min
x

fðxÞ ¼ p1 þ p2 þ p3

p1 ¼
ðu� dÞ2 if u< d

0 if u� d

(

u¼
Pn

i¼1ð1:2Þ
n�ixi

p2 ¼
ðv� dÞ2 if v< d

0 if v� d

(

v¼
Pn

i¼1ð�1:2Þ
n�ixi

p3 ¼
Pm

j¼0 p
0
j;p
0
j ¼

ðwj� 1Þ2 if wj > 1

ðwjþ 1Þ2 if wj <�1
0 if � 1OwjO1

8
><

>:
wj ¼

Pn
i¼1

2j
m� 1
	 
n�i

xi;

for n ¼ 9: xi 2 ½�128; 128�n, d ¼ 72:661, and m ¼ 60
for n ¼ 17: xi 2 ½�32768; 32768�n, d ¼ 10558:145, and m ¼ 100.
The number of local minima is not known but the global minimum is

known to be as shown in Table 18.

Table 18. Global optimizers for Storn’s Tchebychev Problem

n f(x*) x*

9 0 (128, 0, )256, 0, 160, 0, )32, 0, 1)
17 0 (32768, 0, )1331072, 0, 21299, 0, )180224, 84480, 0, )2154, 0, 2688, 0, )128, 0, 1)

Table 17. Global optimizers for Shekel’s Foxholes Problem

n f(x*) x*

5 )10.4056 (8.025, 9.152, 5.114, 7.621, 4.564)

10 )10.2088 (8.025, 9.152, 5.114, 7.621, 4.564, 4.771, 2.996, 6.126, 0.734, 4.982)
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50. Wood’s Function (WF) (Michalewicz, 1996; Wolfe, 1978)

min
x

fðxÞ ¼ 100ðx2 � x21Þ
2 þ ð1� x1Þ2 þ 90ðx4 � x23Þ

2 þ ð1� x3Þ2

þ 10:1 ðx2 � 1Þ2 þ ðx4 � 1Þ2
h i

þ 19:8ðx2 � 1Þðx4 � 1Þ
subject to �10OxiO10, i 2 f1; 2; 3; 4g. The function has a saddle near
ð1; 1; 1; 1Þ. The only minimum is located at x� ¼ ð1; 1; 1; 1Þ with fðx�Þ ¼ 0.
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Moré, J., Garbow, B. and Hillstrom, K. (1981), Testing Unconstrained Optimization Soft-
ware, ACM Transaction on Mathematical Software 7, 17–41.

Muhlenbein, H., Schomisch, S. and Born, J. (1991), The parallel genetic algorithm as function
optimizer, In: Belew R. and Booker, L. (eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan Kaufman pp. 271–278.

Neumaier, A. (2003a), COCONUT benchmark, WWW-document, http://www.mat.uni-
vie.ac.at/
neum/glopt/coconut/benchmark.html

Neumaier, A. (2003b), Global and Local Optimization, WWW-document, http://

solon.cma.univie.ac.at/
neum/glopt.html.
Price, W.L. (1977), Global optimization by controlled random search. Computer Journal 20,

367–370.

Price, W.L. (1983), Global optimization by controlled random search. Journal of Optimization
Theory and Applications 40, 333–348.

Price, W.L. (1987), Global optimization algorithms for a CAD workstation. Journal of
Optimization Theory and Applications 55, 133–146.

Price, K.V. (2002), Private Communication, 836 Owl Circle, Vacaville, CA 95687.
Romeijn, H.E. and Smith, R.L. (1994), Simulated annealing for constrained global optimi-

zation. Journal of Global Optimization 5, 101–126.

Salomon, R. (1995), Reevaluating genetic algorithms performance under coordinate rotation
of benchmark functions, BioSystems 39(3): 263–278.

Schwefel, H.P. (1995), Evolution and Optimum Seeking, John Wiley and Sons, New York.

Second (2nd) ICEO: Second International Contest on Evolutionary Optimization, WWW-
document, http://iridia.ulb.ac.be/langerman/2ndICEO.html.

Smith, R.L. (1984), Efficient Monte Carlo procedures for generating random feasible points

uniformly over bounded regions. Operations Research 32, 1296–1308.
Storn, R. and Price, K. (1997), Differential evolution: A simple and efficient heuristic for

global optimization over continuous spaces. Journal of Global Optimization 11, 341–359.

A NUMERICAL EVALUATION OF SEVERAL STOCHASTIC ALGORITHMS 671
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